

Prognostic impact of prehospital management in traumatic brain injury

Rania Ammar², Jihen Bach Hamba¹, Marwa Ben Abdallah, Nedia Bjaoui², Mabrouk Bahloul¹, Adel Chaari², Chokri Ben Hamida¹

Department of Medical Intensive Care, Habib Bourguiba University Hospital, University of Sfax, Tunisia

Emergency Medical Assistance Service (EMAS 04), University of Sfax, Tunisia

Corresponding author: Rania Ammar; Address: Road El Ain km 1

Postal code 3029 Sfax, Tunisia; FAX+216 74 243 427; Phone: +216 21469841; Email: rania.ammarzayani@gmail.com

ABSTRACT

Background: Traumatic brain injury remains a major global health concern, with prehospital management playing a decisive role in both survival and neurological recovery. The actions performed at the accident scene can prevent or exacerbate secondary brain injury, particularly through their impact on oxygenation, perfusion, and the quality of immobilization. **Objective:** To assess the prognostic and functional impact of prehospital management among patients with traumatic brain injury admitted to the intensive care unit.

Methods: A retrospective, descriptive, and analytical study was conducted over six months (January–June 2025) in the medical intensive care unit. We included all patients over 16 years old admitted for TBI with documented prehospital care. Functional outcomes were categorized using the Glasgow Outcome Scale.

Results: Twenty-seven patients were included (median age 33 years; 74.1% male). Road traffic accidents accounted for 96.3% of cases. The median of prehospital Glasgow Coma Scale score was 10. Prehospital care was provided mainly by the Mobile Emergency and Resuscitation Service (59.5%). Treatment included oxygen therapy (25.9%), intubation (25.9%), and cervical immobilization (100%). The median delay between trauma and hospital arrival was 30 minutes. Mortality reached 18.5%. Pupillary abnormalities at both prehospital and admission stages were significantly associated with mortality ($p = 0.02$). Longer Intensive care unit and in-hospital stays were significantly associated with poor functional outcomes ($p = 0.034$ and $p = 0.04$, respectively).

Conclusion: The outcomes of TBI patients depend not only on injury severity but also on the quality and timeliness of prehospital management. Rapid prehospital Mobile Emergency and Resuscitation Service medical team, continuous monitoring, and safe transport significantly reduce mortality and functional disability.

Keywords: Traumatic brain injury, prehospital care, prognosis, intensive care, functional outcome, mortality.

Introduction

Traumatic brain injury (TBI) remains a major global public health issue (1). Initial management, particularly during the prehospital phase, plays a crucial role in determining both vital and functional prognosis (2–4). The period between the trauma and hospital admission is critical: actions performed at the accident scene can either prevent or worsen secondary brain injuries. Inadequate cerebral oxygenation and perfusion, delayed transfer, or insufficient immobilization can compromise survival and neurological recovery (5).

Prehospital emergency systems differ from one country to another (6). In Tunisia, prehospital management of trauma victims involves several actors: the Mobile Emergency and Resuscitation Service (MERS), the Civil Protection teams, and private ambulances.

The objective of this study was to evaluate the prognostic and functional impact of prehospital management among patients with traumatic brain injury admitted to the intensive care unit.

Methods

This was a retrospective, descriptive, and analytical study conducted over six months (January–June 2025) involving patients admitted for traumatic brain injury to the emergency room of Habib Bourguiba University Hospital in Sfax. We included all patients aged over 16 years admitted for TBI, regardless of severity, who had documented prehospital management. We excluded patients secondarily transferred from another hospital and those with incomplete

records. Data were collected from medical files and prehospital care forms. Functional outcomes were categorized as poor (GOS 2–3) or good (GOS 4–5). Data analysis was performed using SPSS software (version 25.0).

Results

A total of 27 patients were included. The median age was 33 years (range 16–72), with a male predominance (n = 20; 74.1%). Road traffic accidents were the main cause (n = 26; 96.3%). The median prehospital Glasgow Coma Scale (GCS) score was 10; eight patients (29.6%) had a GCS \leq 8. Pupillary examination showed normal pupils in 23 cases (85.2%), unilateral mydriasis in 2 (7.4%), and bilateral mydriasis in 2 (7.4%). Vital distress signs were observed as circulatory distress (n = 2; 7.4%), respiratory distress (n = 7; 25.9%), and neurological distress (n = 22; 81.5%). Vomiting occurred in five patients (18.5%). The median delay between trauma and the arrival of emergency services was 15 minutes (5–30 minutes). Prehospital care was provided by SMUR in 16 patients (59.5%), by Civil Protection in 3 (11.1%), and by type B ambulances in 1 (3.7%). Prehospital interventions included oxygen therapy (n = 7; 25.9%), intubation (n = 7; 25.9%), hemodynamic stabilization by using fluid filling (n=4;14.8%) and catecholamines (n = 4; 14.8%), spine immobilization in all patients (100%), sedation (n = 7; 25.9%), and continuous monitoring (n = 7; 25.9%). On arrival to the emergency room, the median time from trauma to hospital arrival was 30 minutes (5–60 minutes). The median GCS score was 13 (mean 10.05 \pm

4.68). Pupils were normal in 22 cases (81.5%), unilaterally dilated in 4 (14.8%), and bilaterally dilated in 1 (3.7%). Vital distress signs were present in 16 patients (59.3%). Associated injuries included polytrauma (n = 21; 77.8%), thoracic trauma (n = 18; 66.7%), abdominal trauma (n = 13; 48.1%), and bone fractures (n = 24; 88.9%). All patients were admitted to the Intensive Care Unit (ICU). Neurosurgery was required in 5 patients (18.5%). The median ICU stay was 18 days (5–72), and the median total in-hospital stay was 21 days (6–72). Complications included infections (n = 21; 77.8%) and seizures (n = 9; 33.3%). Tracheostomy was performed in 12 patients (44.4%). The Glasgow Outcome Scale (GOS) at discharge was: death (GOS 1) = 5 (18.5%), vegetative state (GOS 2) = 1 (3.7%), severe disability (GOS 3) = 2 (7.4%), moderate disability (GOS 4) = 5 (18.5%), and good recovery (GOS 5) = 14 (51.9%). Table 1 shows that prehospital bilateral mydriasis admission and myosis or normal light reflex at admission were the only factors significantly associated with mortality ($p = 0.02$ for both). Table 2 shows that ICU stay duration and total hospital stay were the only factors significantly associated with poor functional outcome (GOS 2–3) ($p = 0.034$ and $p = 0.04$, respectively).

Discussion

Traumatic brain injury remains one of the leading causes of mortality and acquired disability worldwide. In developing countries, where road traffic accidents are frequent and prehospital resources are limited, prehospital care is a major

Table 1: Factors Associated with Mortality

Variables	Survivor (n=22)	Dead (n=5)	p
Median age (years)	36	20	0.8
Sex (M); n(%)	15 (68.18)	5 (100)	0.2
Pre-hospital Glasgow Coma Scale (median)	10	10	0.6
Pupil status (pre-hospital)			
– Myosis or normal light reflex; n(%)	18 (81.81)	3 (60)	0.08
– Unilateral mydriasis; n(%)	2 (9.09)	0	0.4
– Bilateral mydriasis; n(%)	0	2 (40)	0.02
Pre-hospital vital distress signs			
– Circulatory distress; n(%)	18 (81.81)	5 (100)	0.3
– Respiratory distress; n(%)	16 (72.72)	4 (80)	0.6
– Neurological distress; n(%)	17 (77.27)	5 (100)	0.4
– Vomiting; n(%)	4 (18.18)	1 (20)	0.6
Median delay between trauma and first aid arrival (min)	15	20	0.3
Pre-hospital medical team			
– MERS; n(%)	13 (59.09)	3 (60)	0.9
– Civil protection; n(%)	3 (13.63)	0	0.5
– Type B ambulance; n(%)	1 (4.54)	0	0.6
Pre-hospital resuscitation measures			
– Oxygen therapy; n(%)	6 (27.27)	1 (20)	0.6
– Intubation; n(%)	5 (22.72)	2 (40)	0.5
– Catecholamines; n(%)	3 (13.63)	1 (20)	0.6
– Fluid filling	3 (13.63)	1 (20)	0.6
– Sedation; n(%)	5 (22.72)	2 (40)	0.5
– Continuous monitoring (monitor, oximeter); n(%)	4 (18.18)	1 (20)	0.7
Hospital admission data			
– Median delay between first aid and hospital arrival (min)	30	30	0.7
– Median Glasgow Coma Scale at admission	11	6	0.3
Pupil status at admission			
– Myosis or normal light reflex; n(%)	20 (90.9)	2 (40)	0.02
– Unilateral mydriasis; n(%)	2 (9.09)	2 (40)	0.1
– Bilateral mydriasis; n(%)	0	1 (20)	0.2
Vital distress at admission; n(%)	12 (54.54)	4 (80)	0.3
Associated injuries			
– Polytrauma; n(%)	17 (77.27)	4 (80)	0.6
– Thoracic trauma; n(%)	15 (68.18)	3 (60)	0.5
– Abdominal trauma; n(%)	11 (50)	2 (40)	0.5
– Bone fractures; n(%)	20 (90.9)	4 (80)	0.4
– Neurosurgical procedure; n(%)	3 (13.63)	1 (20)	0.5
Evolution data			
– Median ICU stay (days)	16	10	0.2
– Median total hospital stay (days)	21	12	0.1
Complications			
– Infection; n(%)	18 (81.81)	3 (60)	0.3
– Seizures; n(%)	7 (31.81)	2 (40)	0.5
– Tracheostomy; n(%)	11 (50)	1 (20)	0.2

Mobile Emergency and Resuscitation Service (MERS), intensive care unit(ICU), N/A: not applied

Table 2: Factors Associated with Functional Outcome

Variables	GOS 4-5 (n=19)	GOS 2-3 (n=3)	p
Median age (years)	24	21.5	0.4
Sex (M); n(%)	12 (63.15)	3 (100)	0.3
Pre-hospital Glasgow Coma Scale (median)	11	8.5	0.07
Pupil status (pre-hospital)			
– Myosis or normal light reflex; n(%)	15 (98.74)	3 (100)	0.5
– Unilateral mydriasis; n(%)	2 (10.52)	0	0.6
Pre-hospital vital distress signs			
– Circulatory distress; n(%)	4 (21.05)	0	0.5
– Respiratory distress; n(%)	4 (21.05)	2 (66.66)	0.2
– Neurological distress; n(%)	14 (73.68)	3 (100)	0.5
– Vomiting; n(%)	3 (15.78)	1 (33.33)	0.4
Median delay between trauma and first aid (min)	15	15	0.5
Pre-hospital medical team			
– MERS; n(%)	12 (63.15)	1 (33.33)	0.3
– Civil protection; n(%)	3 (15.78)	0	0.7
– Type B ambulance; n(%)	1 (5.26)	0	0.8
Pre-hospital resuscitation measures			
– Oxygen therapy; n(%)	5 (26.31)	1 (33.33)	0.6
– Intubation; n(%)	4 (21.05)	1 (33.33)	0.7
– Catecholamines; n(%)	2 (10.52)	1 (33.33)	0.6
– Fluid filling	2 (10.52)	1 (33.33)	0.6
– Sedation; n(%)	4 (21.05)	1 (33.33)	0.7
– Continuous monitoring (scope, oximeter); n(%)	3 (15.78)	1 (33.33)	0.7
Hospital admission data			
– Median delay between first aid and hospital arrival (min)	30	30	0.9
– Median Glasgow Coma Scale at admission	13	8	0.5
Pupil status at admission			
– Myosis or normal light reflex; n(%)	17 (89.47)	3 (100)	0.6
– Bilateral mydriasis; n(%)	2 (10.52)	0	0.7
Vital distress at admission; n(%)	9 (47.36)	3 (100)	0.1
Associated injuries			
– Polytrauma; n(%)	14 (73.68)	3 (100)	0.4
– Thoracic trauma; n(%)	15 (98.74)	3 (100)	0.3
– Abdominal trauma; n(%)	9 (47.36)	2 (66.66)	0.5
– Bone fractures; n(%)	17 (89.47)	3 (100)	0.7
– Neurosurgical procedure; n(%)	3 (15.78)	0	0.6
Evolution data			
– Median ICU stay (days)	13	40	0.034
– Median hospital stay (days)	17	41.5	0.04
Complications			
– Infection; n(%)	15 (98.74)	3	0.5
– Seizures; n(%)	6 (31.58)	1	0.7
– Tracheostomy; n(%)	8 (42.1)	3	0.1

Mobile Emergency and Resuscitation Service (MERS), intensive care unit (ICU), NA: not applied

determinant of both vital and functional outcomes (5,7). In our series, most patients were young men with a median age of 33 years, consistent with international literature (8–10). The delay between the accident and the arrival of emergency services is a critical prognostic factor (11). In low- and middle-income countries, the average prehospital delay is around 217 minutes—much longer than in high-income settings (12). Moderate (10–60 min) and prolonged (≥ 61 min) delays are associated with higher mortality ($OR \approx 1.3$) and increased 24-h mortality ($OR \approx 3.4$ –3.8) (13). Rogers et al. emphasized the “golden hour” of trauma care: every minute lost increases the risk of secondary neurological deterioration (14). Longer times from injury to hospital admission are also linked to poorer functional outcomes (15). Patients managed by a medical MERS team had significantly higher survival and better neurological recovery than those managed by non-medical teams (16). The advantage of such teams lies in early intubation and assisted ventilation, stable hemodynamic management, continuous monitoring, and coordination with the receiving hospital. These findings are consistent with studies by Baxt & Moody (17) and Sampalis et al. (18), which showed significantly lower mortality in severe TBI patients receiving full prehospital resuscitation. Transport by (MERS) reduces 30-day mortality compared to transport by Civil Protection (16). Management by paramedics is associated with higher mortality and severe disability ($GOS \leq 3$) (16,19). Initial injury severity, particularly a low GCS score, remains a robust predictor of mortality and

sequelae (20), as observed in our study. Pupillary abnormalities (unilateral or bilateral mydriasis) are major neurological signs of poor prognosis (20); they were more frequent among deceased patients in our series. Early oxygenation is one of the most critical interventions (3,21). A systematic review by Shafique et al. showed that prehospital intubation reduces morbidity and mortality compared with non-intubated TBI patients (22).

Thirawattanasoot et al. found that a prehospital $\text{SpO}_2 \geq 94\%$ correlates with better outcomes in hypotensive TBI patients (23). Maintaining adequate cerebral perfusion depends on prompt correction of hypotension through fluid resuscitation and, if necessary, vasoactive drugs. Early stabilization limits secondary ischemic damage (3). A systematic review of moderate-to-severe TBI demonstrated that hypotension is significantly associated with higher mortality (24). A multicenter cohort study confirmed that prehospital hypotension, hypoxia, or hypocapnia each increases the risk of death or disability after TBI (25). Lack of immobilization exposes patients to potential spinal cord injuries, often with devastating consequences (26). Pain and agitation increase intracranial pressure; judicious use of analgesics and sedatives under monitoring improves hemodynamic and neurological stability (27,28). Prolonged ICU or hospital stays after TBI are often associated with worse outcomes, more complications, and higher functional disability at discharge (29). In our study, longer ICU and hospital stays were

significantly associated with poor functional prognosis, in agreement with the literature.

Limitations: This study has several limitations. It was retrospective and relied on the quality of recorded data. The sample size was relatively small, and no long-term follow-up was performed (GOS was assessed only at discharge). Nevertheless, this study provides a realistic overview of current conditions and highlights the crucial importance of the prehospital chain in post-traumatic prognosis.

Conclusion

The prognosis of patients with traumatic brain injury depends not only on the initial severity of the injury but also on the speed and quality of prehospital management. Early Medical MERS team intervention, safe transport, and continuous monitoring are associated with a significant decrease in mortality and neurological sequelae.

References

1. Chelly H, Bahloul M, Ammar R, Dhouib A, Mahfoudh KB, Boudawara MZ, et al. Clinical characteristics and prognosis of traumatic head injury following road traffic accidents admitted in ICU "Analysis of 694 cases". *Eur J Trauma Emerg Surg.* 2019;45(2):245-53.
2. Stocchetti N, Zanier ER. Chronic impact of traumatic brain injury on outcome and quality of life: a narrative review. *Crit Care.* 2016;20(1):148.
3. Lulla A, Lumba-Brown A, Totten AM, Maher PJ, Badjatia N, Bell R, et al. *Prehospital Guidelines for the Management of Traumatic Brain Injury – 3rd Edition. Prehospital Emergency Care.* 2023;27(5):507-38.
4. Schucht JE, Rakhit S, Smith MC, Han JH, Brown JB, Grigorian A, et al. Beyond Glasgow Coma Scale: Prehospital prediction of traumatic brain injury. *Surgery.* 2025;179:108893.
5. Bahloul M, Chelly H, Ben Hmida M, Ben Hamida C, Ksibi H, Kallel H, et al. Prognosis of Traumatic Head Injury in South Tunisia: A Multivariate Analysis of 437 Cases: *The Journal of Trauma: Injury, Infection, and Critical Care.* 2004;57(2):255-61.
6. Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, et al. Traumatic brain injury: integrated

approaches to improve prevention, clinical care, and research. *The Lancet Neurology*. 2017;16:987-1048.

7. Klauber MR, Marshall LF, Luerssen TG, Frankowski R, Tabaddor K, Eisenberg HM. Determinants of Head Injury Mortality: Importance of the Low Risk Patient. *Neurosurgery*. 1989;24:31-6.
8. Bulger EM, Nathens AB, Rivara FP, Moore M, MacKenzie EJ, Jurkovich GJ. Management of severe head injury: Institutional variations in care and effect on outcome*. *Critical Care Medicine*. 2002;30:1870-6.
9. Chesnut RM. THE MANAGEMENT OF SEVERE TRAUMATIC BRAIN INJURY. *Emergency Medicine Clinics Of North America*. 1997;15(3):581-604.
10. Bahloul M, Hamida CB, Chelly H, Chaari A, Kallel H, Dammak H, et al. Severe head injury among children: Prognostic factors and outcome. *Injury*. 2009;40:535-40.
11. Regmi M, Bhatta OP, Sharma MR. Pre-hospital care, pre-hospital delay, and in-hospital delay in patients with traumatic brain injury in getting neurosurgical care in a tertiary care centre: A Cross-Sectional study. *J Nepal Med Assoc*. 2024;62(275):416-20.
12. Shakir M, Irshad HA, Ibrahim NUH, Alidina Z, Ahmed M, Pirzada S, et al. Temporal Delays in the Management of Traumatic Brain Injury: A Comparative Meta-Analysis of Global Literature. *World Neurosurgery*. 2024;188:185-198.e10.
13. Gupta S, Khajanchi M, Kumar V, Raykar NP, Alkire BC, Roy N, et al. Third delay in traumatic brain injury: time to management as a predictor of mortality. *Journal of Neurosurgery*. 2020;132:289-95.
14. Rogers FB, Rittenhouse KJ, Gross BW. The golden hour in trauma: Dogma or medical folklore? *Injury*. 2015;46:525-7.
15. Chen CH, Shin SD, Sun JT, Jamaluddin SF, Tanaka H, Song KJ, et al. Association between prehospital time and outcome of trauma patients in 4 Asian countries: A cross-national, multicenter cohort study. Brohi K, éditeur. *PLoS Med*. 2020;17:e1003360.
16. Yeguiayan JM, Garrigue D, Binquet C, Jacquot C, Duranteau J, Martin C, et al. Medical pre-hospital management reduces mortality in severe blunt trauma: a prospective epidemiological study. *Crit Care*. 2011;15:R34.
17. Baxt WG, Moody P. The Impact of Advanced Prehospital Emergency Care on the Mortality of Severely Brain-injured Patients: The Journal of Trauma: Injury, Infection, and Critical Care. 1987;27:365-9.
18. Sampalis JS, Denis R, Lavoie A, Frechette P, Boukas S, Nikolis A, et al. Trauma Care Regionalisation: A Process-Outcome Evaluation. *The Journal of Trauma: Injury, Infection, and Critical Care*. 1999;46:565-81.
19. Mantych ML, Neupane S, Sapkota M, Cassidy LD, Young SC, Anguzu R, et al. Retrospective analysis of trauma patients transported by dispatch-monitored type B ambulances to Dhulikhel Hospital, Kavre, Nepal, 2019–2023. *Int J Emerg Med*. 2025;18:16.
20. Hossain I, Rostami E, Marklund N. The management of severe traumatic brain injury in the initial postinjury hours – current evidence and controversies. *Current Opinion in Critical Care*. 2023;29(6):650-8.
21. Bahloul M, Chelly H, Gargouri R, Dammak H, Kallel H, Ben Hamida C, et al. [Traumatic head injury in children in south Tunisia: epidemiology, clinical manifestations and evolution. 454 cases]. *Tunis Med*. 2009;87:28-37.
22. Shafique MA, Haseeb A, Asghar B, Kumar A, Chaudhry ER, Mustafa MS. Assessing the impact of pre-hospital airway management on severe traumatic Brain injury: A systematic review and Meta-analysis. *The American Journal of Emergency Medicine*. 2024;78:188-95.
23. Thirawattanasoot N, Chantanakomes J, Pansiritanachot W, Rangabpai W, Surabenjawong U, Chaisirin W, et al. Association between prehospital oxygen saturation and outcomes in hypotensive traumatic brain injury patients in Asia (Pan-Asian Trauma Outcomes Study (PATOS)). *Int J Emerg Med*. 2025;18(1):104.
24. Lee JW, Wang W, Rezk A, Mohammed A, Macabudbud K, Englesakis M, et al. Hypotension and Adverse Outcomes in Moderate to Severe Traumatic Brain Injury: A Systematic Review and Meta-Analysis. *JAMA Netw Open*. 2024;7(11):e2444465.
25. Maiga AW, Lin HHS, Wisniewski SR, Brown JB, Moore EE, Schreiber MA, et al. Adverse Prehospital Events and Outcomes After Traumatic Brain Injury. *JAMA Netw Open*. 2025;8:e2457506.
26. McDonald NE, Curran-Sills G, Thomas RE. Outcomes and characteristics of non-immobilised, spine-injured trauma patients: a systematic review of prehospital selective immobilisation protocols. *Emerg Med J*. 2016;33:732-40.
27. Russo G, Harrois A, Anstey J, Van Der Jagt M, Taccone F, Udy A, et al. Early sedation in traumatic brain injury: a multicentre international observational study. *Critical Care and Resuscitation*. 2022;24(4):319-29.
28. Gausche-Hill M, Brown KM, Oliver ZJ, Sasson C, Dayan PS, Eschmann NM, et al. An Evidence-based Guideline for Prehospital Analgesia in Trauma. *Prehospital Emergency Care*. 2014;18(sup1):25-34.
29. Réa-Neto Á, Da Silva Júnior ED, Hassler G, Dos Santos VB, Bernardelli RS, Kozesinski-Nakatani AC, et al. Epidemiological and clinical characteristics predictive of ICU mortality of patients with traumatic brain injury treated at a trauma referral hospital – a cohort study. *BMC Neurol*. 2023;23(1):101.